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Abstract 

A method for calculating the retarded Green’s function for the gravitational wave equation 
in Friedmann-Roberson-Walker spacetimes, within the formalism of linearized Einstein 
gravity is developed. Hadamard’s general solution to Cauchy’s problem for second-order, 
linear partial differential equations is applied to the FRW gravitational wave equation. 
The retarded Green’s function may be calculated for any FRW spacetime, with curved or 
flat spatial sections, for which the functional form of the Ricci scalar curvature B is known. 
The retarded Green’s function for gravitational waves propagating through a cosmological 
fluid composed of both radiation and dust is calculated analytically for the first time. It 
is also shown that for all FRW spacetimes in which the Ricci scalar curvatures does not 
vanish, R # 0, the Green’s function violates Huygens’ principle; the Green’s function has 
support inside the light-cone due to the scatter of gravitational waves off the background 
curvature. 
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I. Introduction 
The Green’s function is an important tool for evaluating the solution to a partial 

differential equation for a given set of boundary conditions. The Green’s function repre- 
sents the solution to Cauchy’s problem: given a set of properly formulated initial data, the 
Green’s function may be used to uniquely determine the final, evolved data. In physics, 
one may determine the evolution of a field according to its equations of motion, given some 
initial data. The techniques used in this paper have been widely applied to the calculation 
of Green’s functions, or propagators, for quantum fields in curved spacetime. Here, those 
techniques will be applied to classical fields in cosmology. In this paper I will determine the 
evolution of a tensor field, representing gravitational waves, given a source stress-energy 
tensor. The goal of this paper, then, is to calculate the Green’s function for gravitational 
waves evolving in an arbitrary FRW spacetime. 

The Green’s functions may be useful for the study of gravitational radiation in FRW 
spacetimes, especially as it relates to observational cosmology (for an example, see [l]). For 
situations in which the stress-energy tensor of a source of gravitational waves is known, the 
Green’s function may be used to calculate the properties of the tensor metric perturbations, 
and the spectrum of gravitational radiation. Examples of such sources are cosmic strings 
or scalar fields present in the early universe. The tensor perturbations generated by such 
sources may be manifest as anisotropies in the cosmic microwave background, or as a 
spectrum of stochastic gravitational radiation. Then, the Green’s function may be used 
for the calculation of physically observable quantities. 

The organization of the paper is as follows. In section II, the formalism for calculating 
the Green’s function, following Hadamard’s general solution to Cauchy’s problem for the 
wave equation, will be presented. A similar technique was developed by Waylen in [2,3]. In 
section III, this technique will be applied to find the Green’s functions for arbitrary FRW 
spacetimes. The main result of this paper, a general expression for the Green’s function for 
any FRW spacetime in which R is known, will be presented. Several specific cases will be 
evaluated explicitly, including the case in which the cosmological fluid undergoes a smooth 
transition from radiation- to dust-dominated expansion. In section IV the properties and 
applications of these Green’s functions will be discussed. The focus will be on the cosmo- 
logical significance of those terms which violate Huygens’ principle. A final summary of 
this work will be presented in section V. 

II. Formalism for calculating Green’s functions 
The technique for calculating Green’s functions follows from Hadamard’s general so- 

lution to Cauchy’s problem for a second-order, linear partial differential equation [4]. The 
most general form for the solution to the tensor wave equation 

hab;c’ + Ahat, = 0 (11.1) 

may be written as an expansion in powers of the non-local, biscalar of geodetic interval 
U(Z,Z<) = +S(I,Zi)** where s(z,z;) is the geodetic interval between a fixed 4-vector zi 
and a free /t-vector z in the spacetime. [Note that A is some arbitrary function, not the 
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cosmological constant.) The Green’s function solution is a bitensor. an object with tensor 
indices on the spatial hypersurfaces zi and I: 

G(x, x&,bcidL = L [u,bcidi; + v,bcid; log 1~1 + wabcidi]. 
4x2 

(11.2) 

Here, U, II, and UJ are bitensors which are free of singularities. Extending II.2 into the 
complex-o plane, and retaining only the imaginary part, we may obtain the retarded 
solution [5,6] 

G’%, dab 
cid; 

= ’ [t‘,bcidi6(U) - V,bcidi8(-U)]o(,i). 
4?r 

The parameter X runs between the spacetime points Zi and z, such as the time, and is 
positive when the spacelike hypersurface containing z lies to the future of that containing 
xi. In that this equation represents the solution to the wave equation which is homogeneous 
everywhere except at a single point, we may obtain the solution to the inhomogeneous wave 
equation 

hob;cc + Ahab = fob 

by summing the contribution of many points: 

(11.4) 

h(X),6 = /= ~d42’GPet(X,2’),bcidif(x’),;di. (11.5) 
JZ; 

Thus, the Green’s function may be used to construct solutions to the wave equation. 
Equation 11.3, then, gives the retarded Green’s function which we seek. 

A prescription for calculating the non-singular, bitensor quantities u and u may be 
obtained by generalizing the work of Dewitt and Brehme [5,6] and McLenaghan [7] on the 
scalar and vector wave equations. Such a calculation has been carried out by Waylen [2,3]. 
One may apply Hadamard’s general solution 11.2 to the homogenous wave equation, and 
equate terms with matching powers of o. One obtains 

(u;,’ - ~)TL,~~‘~! + 2u,bCid,;cu;c = 0 

2~;&,bcidi’= + (czcc - 2)vabcidi + u,bcidi;cc + Auabc;di = ,,, 
(11.6) 

Manipulating these equations, we find that [7] 

mu=-; 
J 

f+c - 4) 

v bcidi _ _ 1 
a - 5%” 

cidi 

s 
dX(Uefg~h~:cC -t Auefgih;)(21-1)efg,hi. 

(11.7) 

In general, the bitensors u and ‘u will be proportional to the bitensor of parallel geodetic 
transport (see the discussion of such bitensors in [5]). The functions u and u may be 
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evaluated once the biscalar of geodetic interval a is known. Therefore, for a given metric, 
CT, u. and 2) may be determined, and the Green’s function for the tensor wave equation 
may be evaluated. This general technique may be applied to the wave equation in any 
spacetime. 

III. Green’s functions in FRW spacetimes 
The gravitational wave equation for which the Green’s function will be determined, 

describing the propagation of tensor metric perturbations on a background spacetime, may 
be derived in the context of linearized, Einstein gravity. (For some details on linearized, 
Einstein gravity, see (8,9]). I will consider tensor metric perturbations, gab -+ gab + /tab, 
where the line element for the background, FRW metric is 

ds2 = a(v)2(-dq2 + 1 FiTa + r2de2 + r2 sin2 ed$2). (111.1) 

Due to the symmetries of the FRW spacetime, I may apply the transverse, traceless, 
synchronous (TTS) gauge conditions [lO,ll] 

h ob ;’ = habgab = habtb = 0 (111.2) 

to isolate the physical degrees of freedom in the gravitational radiation. Here, t, is a unit 4- 
vector pointing in the time direction 7, orthogonal to spacelike hypersurfaces. Ultimately, 
the gravitational wave equation is found to be 

16?rGT~;U’Ce = hab;cc + 2Rc,dbhc,+ (111.3) 

Here. Rcadb is the Riemann curvature tensor in the background FRW spacetime, and G is 
the gravitational contant. (We use units such that the speed of light is unity: c = 1.) The 
stress-energy tensor T~~Urce represents the external source of the gravitational waves. 

We may now apply the techniques developed in the previous section in order to eval- 
uate the retarded Green’s function. The bitensor functions u and u are proportional to 
the transverse, traceless, synchronous bitensor C(z, z;)06cid’, which projects only the TTS 
portion of the source stress-energy tensor from the spacelike hypersurface at zi to I. The 
TTS bitensor &bcidi may be constructed through the use of the spatial biscalar of geodetic 
interval, p(Z,Z;) = IZ - Zi’iJ, following the work of Allen and Jacobson [12,13]. Defining 

v, = V&(Z, 2;) pa6 = Sob + t,tb 

va4 = v,; p(Z, 5;) pabi = gbbi p,b 
(111.4) 

the unique TTS bitensor with indices a, b on the tangent space at 2, and ci, d; at pi is 

~abdi ,pacipbdi + pad;pb=i _ pabpcidi + vavb’pcidc + pabvcivdi 

+ Pa”; vbvdi + P,,d’ vbv”’ + pbCivahVd’ + pbd’VaVci + vavbvci vd’, 
(111.5) 
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Here, va~obcidi = gab~nb4i = to~obci4 = 0, such that it is transverse, traceless, and 
synchronous. Thus, combining equations 11.3,7, and 111.3 the entire prescription for 
calculating the Green’s function for tensor metric perturbations is specified. 

The calculation of the Green’s function for FRW spacetimes may now be carried 
out. Having specified the background metric, the biscalar of geodetic interval is o = 
+(I? - ?;,I’ - (7 - v;)~). Evaluating equations 11.7, 

(111.6) 

In this equation C(z) = x/sin(z) and R is the curvature scale of the spatial sections of 
the spacetime such that 3R = 6Re2. In the case K = 0, ‘R --) cc so that C = 1. Applying 
the above results to equations II.3 and 111.3, one may write the Green’s function s,s 

G”‘(x, Zi)ab 
cidi =c(Iz- z’I/R) J(V -Vi - I?- zil) 

4Ta(%b(rl) [ I? - Zil 

J 
‘) a2 (Mdd S(7) - 77; - 15 -Z;j) 1 

(111.7) e(‘7j - l)i)C(Z,xi)&Cidi. vi II - l)i 
Note that the Green,‘s function is symmetric under interchange z c Zi, as would be 
expected. Also, the Green’s function possesses the correct dimensionality, (lengtll)-2, 
where the coordinates (n,Z) are dimensionless and the expansion scale factor a carries 
units of length. This equation composes the main result of this paper. 

The Green’s function may be evaluated for a number of specific cases. The results are 
displayed in the accompanying table. (See table.) In this table, a = -1, 1,2 for deSitter 
spacetime, radiation- and dust-dominated expansion, respectively. Here, the equation of 
state of the cosmological fluid is p = %p. Minkowski spacetime is given by K = 0 
and a(n) = 1 (for which case the preceding equation of state is invalid). The first three 
entries in the table give the expansion scale factor and the Green’s function for an ideal 
cosmological fluid, in a spacetime with flat and curved spatial sections. The results from 
the first entry, for flat spatial sections, have been previously calculated for the specific 
cases a = -1,1,2 [1,14]. The Green’s function for arbitrary (I and for any K is given 
here for the first time. The last three entries in the table give the expansion scale factor 
and Green’s function for a mixed cosmological fluid, in a spacetime with flat and curved 
spatial sections. In the case of the mixed ideal fluid, the energy density is p = Pr,,d + pmat 
and the pressure is p = ;&.a& where r is a function of perit and &&no), and no is 
the present-day conformal time. Then, for 7 < 7, the fluid is radiation-dominated. For 
n > T, the fluid is dust-dominated. The Green’s function for this mixed case is presented 
here for the first time. This case represents the most realistic cosmological scenario. 
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IV. Properties and applications of Green’s functions 
The Green’s functions describing the evolution of gravitational radiation in FRW 

spacetimes, derived in the preceding section, display interesting properties and have useful 
applications. which may now be discussed. Specifically, one may examine the physical 
consequences of the terms in the Green’s functions which contribute to the violation of 
Huygens’ principle. Applications of the analytic Green’s functions for open and closed 
spacetimes, for a combined radiation and matter fluid will be discussed. 

Huygens’ principle states that the effect of a luminous disturbance about some point 
at time t will be localized at a later time t’ in a very thin spherical shell at a radius c(t’- t) 
[4]. So, a wave packet travels spherically outward on the light cone from some source. 
From examining equation 11.3, one finds that for v # 0, the Green’s function has support 
inside the light cone; the “wave packet” disperses 89 it travels and is not localized on a thin 
spherical shell. In an FRW spacetime, equation III.7 indicates that when R # 0 Huygens’ 
principle is violated. 

The violation of Huygens’ principle is due to the coupling of the curvature of spacetime 
to the tensor metric perturbations. The energy in the background curvature feeds into the 
gravitational radiation. This coupling of spacetime curvature to fields has been well studied 
on the microscopic level in the context of particle creation [lS,lS]. (See references [17,18] 
for a discussion of quantum mechanical propagators with respect to Huygens’ principle.) 
A classical analogue of particle creation is observed here on the macroscopic level 119,201. 
Examining the table, the function V increases with the expansion a(n); V represents the 
amplification of the classical gravitational field due to the expansion. One may say that 
energy is transferred from the expansion to the gravitational field. Ultimately, it may 
be simply stated that Huygens’ principle for gravitational waves propagating in an FRW 
spacetime is satisfied only when R = 0, or the spacetime is filled with a conformally- 
invariant radiation fluid. 

The Green’s function for the case of the mixed radiation-plus-dust fluid, for K = 
&l,O, as presented in the table, is new. These analytic expressions should be useful for 
examining the evolution of gravitational waves through the transition from radiation- to 
dust-dominated expansion. 

The primary application of the Green’s functions derived in this paper is for the 
situation in which the source stress-energy tensor is known. The source ought to be “stiff”, 
in that the source evolves freely of the background spacetime and the perturbations it 
produces. Some examples are cosmic strings, global topological defects, and scalar fields 
[1,14,21,22]. Of interest are the anisotropies produced in the microwave background, and 
the spectrum of gravitational radiation emitted. 

The anisotropies in the microwave background may be calculated by summing the con- 
tributions to the temperature fluctuations caused by the perturbations in the gravitational 
field along the path length of a photon traveling from the surface of last scattering. 

=-- 1 JdAe”(A)eb(A)g(& J ~d4~iG’“‘(~.~i)abcidi16xGTdource(zi),di) 2 
(Iv.1) 
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For a given source stress-energy tensor, the temperature fluctuations ST/T causedd by 
cosmic strings, global topological defects, or scalar fields [1,21,14,22] may be calculated. 

The energy density and power in the gravitational radiation emitted by a given source 
may be examined by calculating the stress-energy tensor 

8?rGT,gbrav =;hcd[hdotbs + i;b;ac - hab;cd - hed:ab] - $hcd;,hd,;t, 

+ &,[hcdh,d;,,n + ;h,d:,h+” - hcdh,& + $1. 

(IV.2) 

This stress-energy tensor, the terms occuring in the perturbed Einstein’s equations which 
are second-order in h, may be evaluated for a given source through the use of the Green’s 
function. This expression may have use in studying the power in tensor metric perturba- 
tions produced during inflation (for a recent review, see (23]), or through the collision of 
bubbles formed in a first-order phase transition [24]. In this case, the Green’s functions 
derived in the preceding section for the mixed ideal fluid may be especially useful for cal- 
culating the evolution of the gravitational waves through the transition from radiation- to 
dust-dominated expansion. 

Finally, it is interesting to note that while the Green’s function for the mixed ideal 
fluid has been obtained, the mode functions for the gravitational waves in such a case 
apparently cannot be written in terms of known functions. In the case of a single, ideal 
fluid background, the mode functions, solutions to equation 11.1, take the form of Bessel 
functions. The case of the mixed fluid, however, appears much more complicated. 

V. Conclusion 
In this paper the retarded Green’s functions for the gravitational wave equation in 

Friedmann-Robertson-Walker spacetimes, within the formalism of linearized Einstein grav- 
ity, were calculated. While the form for the Green’s function for a generic FRW spacetime 
was presented, several specific csses were considered. These cases, presented for the first 
time, include an ideal cosmological fluid with an equation of state p = %p, and the 
case of a mixed ideal fluid of radiation and collisionless dust, where p = &a,j + pmot and 
p = $prad. The G reen’s functions for varying spatial curvature, K = 0, fl were also con- 
sidered. It was also shown that for all non-conformally invariant FRW spacetimes, in which 
R # 0, the Green’s function violates Huygens’ principle. This is the classical analogue of 
particle creation in a varying gravitational field, as the gravitational waves scatter off the 
background curvature and gain energy from the cosmological expansion. Finally, it was 
indicated how these Green’s functions may be applied to the calculation of the microwave 
anisotropies and spectrum of gravitational radiation produced by “stiff’ sources. These 
applications of the Green’s functions will be carried out in a future work. 
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Table 

Green’s functions for gravitational waves in FRW spacetimes 

Gret(qz;)abcidi = y;yg [Q=g=$- + v-!$““q8(7j - Tgz(z,Z;)ab=~d~ 

K C(117 - jZil/R) a(v) V(T) cosmology 

I I 0 1 I &7i)[$la I 
a(o-1)(7j-q; ~1 2% n ~-~-TiiilJ 

-1 ~/sinh(~) 
4%)~~1” $(a- 1)(&$/$&f&) ideal fluid 

1 ~/sin(~) 4%)[$($$jjl” $(a - 1) ( Si~~,“~J~$$~,) ideal fluid 

0 1 4%)[*1 mixed tluid I I p%$!# 

-1 y/sinh(@-$l) a(lli)[,‘.~~~=.8i~~:I~~~~~] & logI 2rcotll(q/2)+1 
Zrcoth(r);/2)+1] mixed fluid 

1 v/ sin( 9) a(~~)[ ~S~~~!~:~“,~~~,] ( ) 
&~~g~“,‘,‘,“,::,;;;)~:l mixed fluid 

7 



REFERENCES 
1. S. Veeraraghavan and A. Stebbins, Astrophys. J. 365, 37 (1990). 
2. P. C. Waylen, Proc. R. Sot. London A. 362, 233 (1978). 
3. P. C. Waylen, Proc. R. Sot. London A. 362, 245 (1978). 
4. J. Hadamard, Lectures on Cazlchy’s problem in linear partial difleerential equations, 

Dover Publications: New York (1952). 
5. Bryce S. Dewitt and Robert W. Brehme, Annals of Physics 9, 220 (1960). 
6. Bryce S. Dewitt, Dynamical theory of groups and fields, Gordon and Breach: New 

York (1965). 
7. R. G. McLenaghan, Proc. Camb. Phil. Sot. 65, 139 (1969). 
8. S. Weinberg, Gravitation and Cosmology, Wiley: New York (1972). 
9. C. Misner, K. Thorne and J. Wheeler, Gruviladion, W. H. Freeman: San Francisco 

(1973). 
10. L. P. Grishchuk and A. D. Popova, Sov. Phys.-JETP 53, 1 (1981). 
11. L. P. Grishchuk and A. D. Popova, J. Phys. A: Math. Gen. 15, 3525 (1982). 
12. Bruce Allen and Theodore Jacobson, Commun. Math. Phys. 103, 669 (1986). 
13. B. Allen, Nut. Phys. B287, 743 (1987). 
14. N. Turok, Phys. Rev. Lett. 63, 2652 (1989). 
15. L. Parker, Phys. Rev. 183, 1057 (1969). 
16. BirreU and Davies, Quantum fields in curued space, Cambridge University Press: 

Cambridge (1986). 
17. J. S. Dowker, Annals of Physics 62, 361 (1971). 
18. J. S. Dowker, Annals of Physics 71, 577 (1972). 
19. L. P. Grishchuk, Sov. Phys.-JETP 40, 409 (1974). 
20. L. P. Grishchuk, Sov. Phys. Usp. 31, 940 (lQ88). 
21. Albert Stebbins and Shoba Veeraraghavan, “MBR anisotropy from scalar field gra- 

dients”, Fermilab-pub-92/188-A (1992). 
22. D. Bennett and S. H. Rhie, UCRL-JC-111244 (1992). 
23. Michael S. Turner, “On the production of scalar and tensor perturbations in infla- 

tionary models”. Fermilab-pub-93/026-A (1993). 
24. A. Kosowsky, Michael S. Turner, and R. Watkins, Phys. Rev. Lett. 69, 2026 

(1992). 
25. Wolfram Research, Inc., MATHEMATICA (Wolfram Research, Inc., Champaign, 

Illinois, 1992). 
26. L. Parker and S. M Christensen. MATHTENSOR (MathSolutions, Inc., Chapel 

Hill, North Carolina, 1992). 


